Decomposition nitrogen is better retained than simulated deposition from mineral amendments in a temperate forest.
نویسندگان
چکیده
Nitrogen (N) deposition (NDEP ) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15 N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy NDEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then estimates of the effects of NDEP on the relative change in C (∆C/∆N) based on short-term isotope-labelled mineral fertilizer additions should be questioned. We used 15 N labelled litter to track decomposed N in the soil system (litter, soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15 N to an equivalent amount in simulated NDEP treatments. By the end of the experiment, three times as much 15 N was retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions (60% and 20%, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more 15 N tracer from litter decomposition than from simulated mineral NDEP (7.5% and 4.5%) and compared to soil recovery, expressed proportionally more 15 N in the A layer than the O layer, potentially indicating uptake of organic N from decomposition. These results suggest effects of NDEP on forest ∆C/∆N may not be apparent from mineral 15 N tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of NDEP is its influence on the rate of N release from litter.
منابع مشابه
Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the F...
متن کاملNitrogen Nutrition of Trees in Temperate Forests—The Significance of Nitrogen Availability in the Pedosphere and Atmosphere
Nitrogen (N) is an essential nutrient that is highly abundant as N2 in the atmosphere and also as various mineral and organic forms in soils. However, soil N bioavailability often limits the net primary productivity of unperturbed temperate forests with low atmospheric N input. This is because most soil N is part of polymeric organic matter, which requires microbial depolymerization and mineral...
متن کاملExogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition.
It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and (15)N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the cou...
متن کاملSoil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate ...
متن کاملRainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil
Soil is a significant source of atmospheric N2O, and soil N2O emissions at a global scale are greatly affected by environment changes that include continuous deposition of atmospheric nitrogen and changing precipitation distribution. However, to date, field simulations of multiple factors that control the interaction between nitrogen deposition and precipitation on forest soil N2O emissions are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2017